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ABSTRACT

This work applied Vlasov’s theory and principle of minimum potential energy to obtain the equation of equilibrium
of timber box beam made of anisotropic material (timber). This equation is similar to that of beam on elastic
foundation (BEF). The closed form solution of the obtained equation enabled distortional warping and pure torsional
stresses of anisotropic timber box beam to be evaluated. A comparative analysis of the theoretical results (results
obtained by analysis of timber box beams using the development here) and the experimental results of the same box
beams was carried out and there is rapor between both results even when anisotropic timber of different species box
beams of uniform web- flange thickness and variation of web- flange thicknesses were used.
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INTRODUCTION

The strength of a structure is a function of the strength of the material used in construdiing it. As long as the meterials strength is designed o the srength of the
prevailing conditionthe structure will not fail.. VWhen someone wantsto designamaterial it is very necessary'to corsider the strength of the material, therefore
the strength of the meterial is a goverming factor. Considering the well known engineering materials like timber, concrete, steel, ceramic and plastics, some
ofthese materials has certain induced improverments like reinforced concrete, prestressed concrete, plywood laminated veneer lumber, and structural timber
composites. This shows thet every material hes intrinsic variations in properties. Inengineering, it is necessary to understand the variations in certain material
by looking at different parametersas in its properties. Thiswill help engineer to be fully knowledgeable on reasons below.

Whydotreesfall?  Whydohuildingsfall?  Whydo struduresfall?  Why do things fall?

STATEMENT OF THE PROBLEM/ RESEARCH ISSUES:

The focus of this study is defined by the problem in the analysis and design of timber box bearms. The need to obtain an optimization technique thet can be
formutlated from Viasov’s concept. This will be useful and relevant in cost optimization of timber construction works and other engineering construction.
The problem of research output in the application of connection/fastening techniques, and timber bridges constructionas in box bridges, box beams and roof
beams canbe tackled. The research solves the problem of creating accessibility inriver line areas and water logged zones in Nigeria by cregting analtemative
bridge design and fabrication mechanismwhether temporal or permanent thet is cheape, affordable and available. Also new understanding of the torsional
resporse of the timber material used in different fabrication of structural members has to be created. So thet long spans beams can equially be fabricated in
timber.

AIMS OF THE WORK:
—  Toformulate ananalytical model for assessment of the torsional response of timber as anisotropic meterial, consequently to develop aminimum
potential energy equation that can be minimized to create stability of beam systens.

OBJECTIVES OF THEWORK:
The main objectives of this research work is to provide an altermative mechanism and material thet can bring about the following
i)  Costoptimization oftimber trussesand beans.
i) Costoptimization oftimber bridges as in box bridges.
i) Toanalysis numerically the stresses in cells of box brridges and the connection fastening techniques.
V)  Usingexisting Vlasov’s equation withsslight modification to analysis and design timber box beanms problers.

LITERATUREREVIEW:
Borg and Gennaro as in Ezeagu (2008) summarily stated that * Basically there are three different procedures for determine the deflection of engineering
strudures: They include:
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(1)Integration of the deflection differential equation of the beam. (2) The strain energy stored in a structure and the use of the laww of conservation of energly.

(3 Graphical methods. Vai A ad Pinus G (1973, Zakie D. B;j1973) Ramos A N; (1960
Brian S; (2005). Timoshenko S. P; (1 1936,1953), Sokolnikoff 1.S; 1946 Westerguard H, M;(1942). Brett P and Nelson H. M; (19%4
Osadebe N.N and Mbajiogu M.SW; (2005). Saada F-.S; Heins CP; (1975). Rekach V.G;, Ekgolts
L

METHODOLOGY:

The general method adopted in this research is as follows:

Formulation of a valid equation (Vlasov’s energy theorem for anisotropic materials). This will involve the
development of mathematical model, an analytical model (formulation of Valsov’s theorem for analysis and design
of timber box beams).

To optimized the formulated minimum energy equation of Valsov’s theorem for box beams in order to create a stable
system and compare the analysis of experimental values with the analytical value.

ANALYTICAL FORMULATION OF ENERGY EQUATION FOR TIMBER BOX BEAM
(ANISOTROPIC MATERIAL).
Timber possesses three perpendicular planes of elastic symmetry i.e.,

i) Longitudinal properties (properties in X direction)

i) Transverse properties (properties in Y direction) or S co-ordinate or Tangential.

iii) Radial properties (properties in Z direction which is assumed negligible)

The corresponding deformations are as noted.
i) the longitudinal displacements is warping (U)
ii) the transverse displacements is distortional (V).

The corresponding known functions are:

U (X,8)----------- longitudinal displacements in x direction
U (y,s)------------ longitudinal displacement in y direction.
V (X,8)------------ transverse distortional displacement in x direction.
V (y,s)------------ transverse distortional displacement in y direction

The general equation is in the form of the relationship

E=2G(l+7y) (4.1)

Where

E = modulus of Elasticity; G = Modulus of Rigidity;
v = The directional and material property — Poisson’s ratio.
The stress —strain relationships are as follows

g, =—*—-vy—Y—+alT———————— (4.2)
E X Y
GY X
ey =———Y +odT —————— — — 4.3)
E Y E X
Tyy
= - — - — — — — — — 4.4
VXY =5 (4.4)
Where
Ex= Young’s modulus in x — direction; E, = young’s modulus in y — direction

vx = Poisson’s ratio in x — direction; yy = Poisson’s ratio in y direction
Ignoring the temperature component of the stress-strain equation,
Equation (4.2) becomes
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(o}
g = Yoy (4.5)
E, Ey
and equation (4.3) becomes
o
g, =L - (4.6)
E, E,

To obtain an expression of direct stress in the principal axis, making ox subject of formula from equation (4.5)

EX
- Oy :Ex8x+YE—0y ————————— (4.7)
y
Also from equation (4.6)
Ey
o, =E, 8y"'VE_Gx __________ (4.8)

Substituting equation (4.8) in equation (4.7)
eqn (7) becomes

multiplying out equatio (4.9) becomes

o, =E,&, +yE, &, +7%0, ————————————— (4.10)
Collecting like terms.
ox—Y20x = Exex+ vy Exgy (4.11)
Simplifying further,
ox [1- ¥? ] = Ex [&x +r gy] (4.12)
ox=Exf§§$?L ———————————————————— (413)

Similarly, equation of direct stress in y direction becomes,

_ Eylsy +ysXJ

T o (4.14)

Equation (4.13) and (4.14) represents the two principal stresses equivalent system that can be generated from equation
(4.7) and (4.8)

In summary,
&, +ye
o, = EXl X ZVJ (4.13)
1-y
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(4.14)

And

Using the above displacement fields and basic strain relationships of the theory of elasticity, the expressions for normal
stress and shear becomes.

O(xs) = Ex{M} + [Q (% 5)} = E{M cp(s)} + E{d\é—gs) (p(s):| _

OX 0s dx
Ex(u'(x) P+ (X)(p(s)) .............................. (4.15)
au(xs) aV(xs) 00 V(X
T(X’S):G{ o ox =6 Ye ds  dx VO
1
G[U 0Pyt V(X) Y } ........................... (4.16)

In a unit cell of a thin walled box structure under generalized loading,

See fig. 4.1 and fig. 4.2
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Fig.4.1: Box beam under generalized loading condition.
pb
A A 4h
2 T 2 <
y Iy
. 4 4
Generalised - A\L Pure /]\ + \L T y
Distortion 4

Torsion Torsion
—_— >
pb
4h
M+ M-
http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

[92]


http://www.ijesrt.com/

[Osadebe*, 4.(8): August, 2015] ISSN: 2277-9655
(I20R), Publication Impact Factor: 3.785

Fig 4.2: Box beam under generalized torsion.

—» From the box beam diagram in fig.4.2, the maximum moment causing the generalized torsion is given as

Mt=%xb=%b ..................... (4.17)

The moment given by Vlasov’s as in Osadebe N.N and Mbajiogu M.S\W; (2005). is given as

M) = V) Mis)o o @.18)

Where M= The bending moment generated in the cross sectional frame of unit width, when there is a unit distortion
V(s)=1.

The total potential energy on the unit cell due to the distortional load of intensity of is given by the combine effects of
(a) Due to direct stresses,

(b) Due to shear stresses

(c) Due to moment — Twisting

(d) Due to external loading

In summary the required direct stress equations are

( 1 ) L ,
o(xs)=E. U 0?0 T VP Longitudinal warping stress.......... (4.152)

o(y.s)=E, (Uiy)(p o T \/l(y) (p(s)) Transverse warping stress....... (4.15b)
Also for shearing stresses,we obtain
1 1 . . .
Ty = G[U(X) (p(s)} + [\/(X)W(s) }3...L0ng|tud|nal shearing stress........ (4.16a)

Tys = G[U ) (pts)} + [\/l(y)\y(s) k ......... Transverseshearing stress.......... (4.16b)

The general potential energy of the timber box structure under the action of a distortional load of intensity P is given
by

MZ(x,5) M?(y,
L g Saagten, e, 10,

©) X y ©)

...(4.19)
3

Where I = ﬂl@_zj is the second area moment of the cross-sectional frame wall thickness t(s).
-

Substituting equations (4.15a; 4.15b; 4.16a; 4. 16b) into equation(4.19)

.[ I [U(x)(P(S) +V(x)(p(5)] LE? (U;,‘P(s) +V'(y)(p(5) )2

Y E

X y

) , 2 . .
2 2
2 [U(” (p(s)+V(X)\I/(s)} 2 [U(V) ([)(s)+V(y)\I’<s)} 2. Mo . Mgy

+G +G + =+ = =20V, (dxds
G G E(S) I ©) E(S) I ©) '
.......................... (4.20)
Expanding the above equation gives the generalized potential energy equation as shown below.
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1 et o2 ! : 2 o2 o2 5 - - 2 o2
= E.[o .L (EX ( U(X)(P(s) +2 U(X) V(X) (P(s) + V(X) (P(s)) + EV(U(y)(P(s) + U(y)V(y)(P(s) + V(x)(P(S)j
2 42 ' ' 22 2 2 ' ' 22
+ G( U(X) (P ©) +2 U(X) V(X) (p(x) \Il(s) + V(y) \ll(s)) + G[ U(y)(p(s) +2 U(y) V(y)(p(s) \Il(s) + V(y)\ll(s)j

2 2
N Mg N My _

E ©) I ©) E O] I O]

29 V(X|S)

dxs

In consideration of various expected strain modes of box beam multiplication diagram, the various strain modes are

given as Fig 4.3
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Fig 4.3: Strain modes of box beams

From the diagram multiplication function, the choices of strain mode (shape function) are as follows:

2
2 N1
1, = t._.ds - C. = | X9 (s
1 I(S)(P(S) © ’ * °CEgle
2
_ 2 - _ M(y,s)
> = I(s)(P(s)t(S)dS - S =0 Eole s
2 J—
=@ WY, teds 1A = [ aGIV o, ds
2
1, = (p(s)t(s)ds;. ................................... (4.22)

In substituting equations (4.22) in the eqn. (4.23)

B 2 ' ' 2 2 ' 2
EX[U(X)Il +2 U(X)V(X)I1 +V(X)I1 + Ey[UMIl +2U(y)l +V(y)l1

1t 2 ' 2 2 ' '
= | +G(U(X)'z +2Uy Vi e+ Vo i +G U L +2U, V. s +V(y)'4j ....... (4.24)
C,+C, —2q,,

Simplifying further, we obtain that
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2 , ; » , ' ' ,
1 Exll[U(X)JFZU(x)V(x)JrV(x)}rEy'l[U(y)JrZU(y)V<y)+V(y)
2 2 . ) , ,

290

.(4.25)

Equations of distortional equilibrium are obtained by minimizing the above function with respect to its functional
variables U and V using the well known Euler-lag range theorem.

Thus the above equation can be minimized using the three equations below.

dz _ d(d“] P (4.263)
ou dx\ou

L L (4.26b)
ov, OX oV,

O B (4.260)
ov, dx\avy'

Considering equation 4.26a we obtain that

on

' 1 2 " 1 1 2 ' '
67LI = Exlll:z U(x)+ 2V(x)+V(x):|+ EYI1|:2 U(y)+ 2V(Y)+V()’)}+G|2|:2 U(X)+ 2 U(y)]+ 26'3(V(X)+V(y))

+ GlA(V'(X)+V'(j)]+cX +C, —2q,

................................................................................................................. (4.27)
6 67'[ " " ‘2 " ! ‘2 ' 1
dx ou® - EXI1[2 U<X)+ 2V(X> +V(><>)+ Eyll[z U(y)+ 2V(y)+v(y))+ G|2(2 U(x) +2 U(y))
+261,(\/, + V) )+ 6LV, + V[ )+C, +C, 20,y ————————————- (4.28)
substituting eqns (4.27 and 4.28) into egn (4.26a),we obtain that
ot —ELRU,-2U, [ ELRU, 20U,
a_axaul _Ex|12U(x)_2U(x) +EyI12U(y)_2U(y) ______________ (4.29)
on oon
Considering equation (4.26b) —— — — = 0 .we obtain,
x OXOV\/,
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on 2 ' ' 2 "N/ 2 2 2

8v_ =Ed 1[U(X)+2U(X)+2V(X))+Eyll[U(y)+2UW)VW)+V(Y)}+G|2[U(X)+U(y)]
261,(U,, + UW)V@))+G'4(2VM+V@,)+Cx +C, = 20 gy (4.30)

also,

9 M _gy, 2U,,+2 e Uz +2U, Vo + Vo |+ 6LIUE + U2

X oy U(>+ U()+ V() B LUy +2Uy Vi + Vi |+ CLIU, + Uy,

+261,(U,, + U@)V}y))+G'4(2VLX)+V'(y,)+Cx +C, =20 gy (4.31)

subsitutingeqn(4.30and 4.31) int oeqn(4.26b)

wehavethat

on 0 on

T [ZV(X) ZV()}FGI [ZVM 2V(XJ ........................ (4.32)

Considering the last equation to be optimized, we have:

on 2 "N/ 2 2 ' ' 2 2
6V_ = ExI 1[U(x)+2 U(x)V(x)+V(X)]+ Eyll[U(y)_'_ 2 U(y) + 2V(y):|+G|2[U(X)+ U(Y)]

y
+261,(U, V., + Uy J+ 6LV +2Vy) )+ €, +C, =20 (4.33)

also.

a 87[ '2 ! ! ‘2 ‘2 ! " 2 2
a3 EL(UG 22UV Vi [ E(U5 r2U,# 2V, | +CLlU;, + U)
y

+261,(U, Vo + Uy )+ GL(Vy+ 2V )+ €. +C, =2 (4.38)
subsitutingeqn(4.33and 4.34) int oeqn(4.26¢)wehave

on 0 on "
o 5_)(; [ZV@) 2V(y):| [ZVM B 2V(y)} _____________ (4.35)
y V,
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The summary of potential energy optimized equations of equilibrium are obtained as

on 0 on . .
a‘a_xﬁzEx'l[zUx—ZV( )]+E ! [ZU 2V(y)] ——————————— (4.29)
ot 0 oOn : : , .
o, oy = Exll[ZV(X)—ZV(X)]+GI4[2V(X)—2V(X)] ————————— (4.32)
on.
o, M‘E ! [2V<y> 2V(y>]+G' [ZV@) 2V(y)} ————————— (4.35)
let A =E, I,
B :Eyllv C:GI4,
A[2U<x>_2V<x)]+B(ZUY‘ZVM)=0 ------------------------- (4.29)
A |:2V(X) B 2V (X)j| +C [2 V(x) N 2V (x)]: O--mmmmmmmmmr e (4.32)
1 " 1 "
B [ZV(Q) -2V (y)} +C [ZV@) -2\ (y)j| =0-----mmmm e (4.35)
from4.32=A+C=0 =A=-C
B+C =0 B=-C
2U..-2U.
- from4.29 = 2 = U§X> fo) _Ed
B 2U,-2U,, Byl
DISCUSSION:

1. From the formulated Vakov’s theorem for anisotropic timber box beam.  The above equations therefore show second
derivatives distortional function of box beam with both the longitudinal and the transverse distortional
component. Itshowsclearly that the answer lies in serviceability not inthe ultimate load.

2. Ithesreduced the rigorously method of design to asimple test of bending test in timber, as a result mekes it easier for engineers to work on.

3. Ithasremove the destructive test of any existing trusses (in-service) whichwill posses serious danger to the lives of inhabitants and the structural
frame alreadly in service.

4. ltobviatesthe series of mode of vibrations of test rigs, possible accidents due to sudden catestrophic collapse of the trusses and the rigs.

5. Ithesreducedthe costiisk associated withthe acquiisition hire of crane, pay loader and construction of test rigs. Therefore for abending of constant
(ET) and of any span, the load factors method by the Viasov’s theorem applies.

6. Theformulated energy equationwill be used inanelysis of the stress problem, and the generalized torsion in anisotropic meterials (timber).

CONCLUSION:

Vlasov’s energy equations for generalized torsion of anisotropic material (timber) have been developed. Inthree equiations obtained, the first equiation shows
a coupled equation of the generalized distortion in both longitudinal direction and transverse direction why the other two shows the particular directioral
distortion .Also the formulated distortions appear lessthan the measured distortionand this is in correlations with the specification on deflection limit and thus
givesagood index of the distortion in the generalized distortion.. This will e useful in predicting the distortional and warping torsion of timber box bearrs.
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